Performance Evaluation of Algorithms using a Distributed Data Mining Frame Work based on Association Rule Mining
نویسندگان
چکیده
Numerous current data mining tasks can be implemented effectively only in a distributed data mining. Thus distributed data mining has achieved significant importance in the last decade. The proposed distributed data mining application framework, is a data mining tool. This framework aims at developing an efficient association rule mining tool to support effective decision making. Association Rule mining focuses on finding interesting patterns from huge amount of data available in the data warehouses. In order to build strong association rules, it depends on the extraction of association rules by Apriori algorithm, AprioriTID algorithm, AprioriHyprid algorithm, FP growth etc. The efficiency of the distributed data mining framework is determined based on the selection of the algorithm. The object oriented implementation has enabled the system to be platform independent. The use of self defined database format gives an upper hand for the system by operating efficiently without any need for third party database drivers. The mined results can be compared and graphically projected. Finally, some expectations for future work are presented where various modes of graphical representations can be included. Keywords-Association Rule Mining, Frequent Intemset, Frequent Pattern Mining, Distributed Data Mining
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملPerformance Evaluation of the Distributed Association Rule Mining Algorithms
One of the best-known problems in data mining is association rule mining. It requires very large computation and I/O traffic capacity, therefore several distributed and parallel association rule mining algorithms have been developed. However the association rule mining problem is NP complete, the execution time estimation of the algorithms can be very important, especially for load balancing or...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملA Novel Method for Selecting the Supplier Based on Association Rule Mining
One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کامل